Directed edge recommender system
Recommender systems have become ubiquitous in online ap- plications where companies personalize the user experience based on explicit or inferred user preferences. Most mod- ern recommender systems concentrate on finding relevant items for each individual user. In this paper, we describe the problem of directed edge recommendations where the system recommends the best item that a user can gift, share or recommend to another user that he/she is connected to. We propose algorithms that utilize the preferences of both the sender and the recipient by integrating individual user preference models (e.g., based on items each user purchased for themselves) with models of sharing preferences (e.g., gift purchases for others) into the recommendation process. We compare our work to group recommender systems and social network edge labeling, showing that incorporating the task context leads to more accurate recommendations.