
Synthetic aperture radar with dynamic metasurface antennas: a conceptual development.
We investigate the application of dynamic metasurface antennas (DMAs) to synthetic aperture radar (SAR) systems. Metasurface antennas can generate a multitude of tailored electromagnetic waveforms from a physical platform that is low-cost, lightweight, and planar; these characteristics are not readily available with traditional SAR technologies, such as phased arrays and mechanically steered systems. We show that electronically tuned DMAs can generate steerable, directive beams for traditional stripmap and spotlight SAR imaging modes. This capability eliminates the need for mechanical gimbals and phase shifters, simplifying the hardware architecture of a SAR system. Additionally, we discuss alternative imaging modalities, including enhanced resolution stripmap and diverse pattern stripmap, which can achieve resolution on par with spotlight, while maintaining a large region-of-interest, as possible with stripmap. Further consideration is given to strategies for integrating metasurfaces with chirped pulse RF sources. DMAs are poised to propel SAR systems forward by offering a vast range of capabilities from a significantly improved physical platform.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1113 Opthalmology and Optometry
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1113 Opthalmology and Optometry
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics