Stability of singular spectral types under decaying pertubations
Publication
, Journal Article
Kiselev, A; Last, Y; Simon, B
Published in: Journal of Functional Analysis
February 20, 2003
We look at invariance of a.e. boundary condition spectral behavior under perturbations, W , of half-line, continuum or discrete Schrödinger operators. We extend the results of del Rio, Simon, Stolz from compactly supported W's to suitable short-range W. We also discuss invariance of the local Hausdroff dimension of spectral measures under such pertubations. © 2002 Elsevier Science (USA). All rights reserved.
Duke Scholars
Published In
Journal of Functional Analysis
DOI
ISSN
0022-1236
Publication Date
February 20, 2003
Volume
198
Issue
1
Start / End Page
1 / 27
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Kiselev, A., Last, Y., & Simon, B. (2003). Stability of singular spectral types under decaying pertubations. Journal of Functional Analysis, 198(1), 1–27. https://doi.org/10.1016/S0022-1236(02)00053-8
Kiselev, A., Y. Last, and B. Simon. “Stability of singular spectral types under decaying pertubations.” Journal of Functional Analysis 198, no. 1 (February 20, 2003): 1–27. https://doi.org/10.1016/S0022-1236(02)00053-8.
Kiselev A, Last Y, Simon B. Stability of singular spectral types under decaying pertubations. Journal of Functional Analysis. 2003 Feb 20;198(1):1–27.
Kiselev, A., et al. “Stability of singular spectral types under decaying pertubations.” Journal of Functional Analysis, vol. 198, no. 1, Feb. 2003, pp. 1–27. Scopus, doi:10.1016/S0022-1236(02)00053-8.
Kiselev A, Last Y, Simon B. Stability of singular spectral types under decaying pertubations. Journal of Functional Analysis. 2003 Feb 20;198(1):1–27.
Published In
Journal of Functional Analysis
DOI
ISSN
0022-1236
Publication Date
February 20, 2003
Volume
198
Issue
1
Start / End Page
1 / 27
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics