Quenching of reaction by cellular flows
We consider a reaction-diffusion equation in a cellular flow. We prove that in the strong flow regime there are two possible scenarios for the initial data that is compactly supported and the size of the support is large enough. If the flow cells are large compared to the reaction length scale, propagating fronts will always form. For small cell size, any finitely supported initial data will be quenched by a sufficiently strong flow. We estimate that the flow amplitude required to quench the initial data of support L
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics