Maximal functions associated to filtrations
Publication
, Journal Article
Christ, M; Kiselev, A
Published in: Journal of Functional Analysis
February 1, 2001
Let T be a bounded linear, or sublinear, operator from Lp(Y) to Lq(X). A maximal operator T*f(x)=sup
Duke Scholars
Published In
Journal of Functional Analysis
DOI
ISSN
0022-1236
Publication Date
February 1, 2001
Volume
179
Issue
2
Start / End Page
409 / 425
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Christ, M., & Kiselev, A. (2001). Maximal functions associated to filtrations. Journal of Functional Analysis, 179(2), 409–425. https://doi.org/10.1006/jfan.2000.3687
Christ, M., and A. Kiselev. “Maximal functions associated to filtrations.” Journal of Functional Analysis 179, no. 2 (February 1, 2001): 409–25. https://doi.org/10.1006/jfan.2000.3687.
Christ M, Kiselev A. Maximal functions associated to filtrations. Journal of Functional Analysis. 2001 Feb 1;179(2):409–25.
Christ, M., and A. Kiselev. “Maximal functions associated to filtrations.” Journal of Functional Analysis, vol. 179, no. 2, Feb. 2001, pp. 409–25. Scopus, doi:10.1006/jfan.2000.3687.
Christ M, Kiselev A. Maximal functions associated to filtrations. Journal of Functional Analysis. 2001 Feb 1;179(2):409–425.
Published In
Journal of Functional Analysis
DOI
ISSN
0022-1236
Publication Date
February 1, 2001
Volume
179
Issue
2
Start / End Page
409 / 425
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics