
Characterization of Calabi–Yau variations of Hodge structure over tube domains by characteristic forms
Publication
, Journal Article
Robles, C
Published in: Mathematische Annalen
August 1, 2018
Sheng and Zuo’s characteristic forms are invariants of a variation of Hodge structure. We show that they characterize Gross’s canonical variations of Hodge structure of Calabi–Yau type over (Hermitian symmetric) tube domains.
Duke Scholars
Published In
Mathematische Annalen
DOI
ISSN
0025-5831
Publication Date
August 1, 2018
Volume
371
Issue
3-4
Start / End Page
1229 / 1253
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Robles, C. (2018). Characterization of Calabi–Yau variations of Hodge structure over tube domains by characteristic forms. Mathematische Annalen, 371(3–4), 1229–1253. https://doi.org/10.1007/s00208-017-1594-3
Robles, C. “Characterization of Calabi–Yau variations of Hodge structure over tube domains by characteristic forms.” Mathematische Annalen 371, no. 3–4 (August 1, 2018): 1229–53. https://doi.org/10.1007/s00208-017-1594-3.
Robles C. Characterization of Calabi–Yau variations of Hodge structure over tube domains by characteristic forms. Mathematische Annalen. 2018 Aug 1;371(3–4):1229–53.
Robles, C. “Characterization of Calabi–Yau variations of Hodge structure over tube domains by characteristic forms.” Mathematische Annalen, vol. 371, no. 3–4, Aug. 2018, pp. 1229–53. Scopus, doi:10.1007/s00208-017-1594-3.
Robles C. Characterization of Calabi–Yau variations of Hodge structure over tube domains by characteristic forms. Mathematische Annalen. 2018 Aug 1;371(3–4):1229–1253.

Published In
Mathematische Annalen
DOI
ISSN
0025-5831
Publication Date
August 1, 2018
Volume
371
Issue
3-4
Start / End Page
1229 / 1253
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics