Skip to main content

How spike generation mechanisms determine the neuronal response to fluctuating inputs.

Publication ,  Journal Article
Fourcaud-Trocmé, N; Hansel, D; van Vreeswijk, C; Brunel, N
Published in: J Neurosci
December 17, 2003

This study examines the ability of neurons to track temporally varying inputs, namely by investigating how the instantaneous firing rate of a neuron is modulated by a noisy input with a small sinusoidal component with frequency (f). Using numerical simulations of conductance-based neurons and analytical calculations of one-variable nonlinear integrate-and-fire neurons, we characterized the dependence of this modulation on f. For sufficiently high noise, the neuron acts as a low-pass filter. The modulation amplitude is approximately constant for frequencies up to a cutoff frequency, fc, after which it decays. The cutoff frequency increases almost linearly with the firing rate. For higher frequencies, the modulation amplitude decays as C/falpha, where the power alpha depends on the spike initiation mechanism. For conductance-based models, alpha = 1, and the prefactor C depends solely on the average firing rate and a spike "slope factor," which determines the sharpness of the spike initiation. These results are attributable to the fact that near threshold, the sodium activation variable can be approximated by an exponential function. Using this feature, we propose a simplified one-variable model, the "exponential integrate-and-fire neuron," as an approximation of a conductance-based model. We show that this model reproduces the dynamics of a simple conductance-based model extremely well. Our study shows how an intrinsic neuronal property (the characteristics of fast sodium channels) determines the speed with which neurons can track changes in input.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Neurosci

DOI

EISSN

1529-2401

Publication Date

December 17, 2003

Volume

23

Issue

37

Start / End Page

11628 / 11640

Location

United States

Related Subject Headings

  • Sodium Channels
  • Neurons
  • Neurology & Neurosurgery
  • Models, Neurological
  • Kinetics
  • Electric Conductivity
  • Action Potentials
  • 3209 Neurosciences
  • 17 Psychology and Cognitive Sciences
  • 11 Medical and Health Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci, 23(37), 11628–11640. https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
Fourcaud-Trocmé, Nicolas, David Hansel, Carl van Vreeswijk, and Nicolas Brunel. “How spike generation mechanisms determine the neuronal response to fluctuating inputs.J Neurosci 23, no. 37 (December 17, 2003): 11628–40. https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003.
Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N. How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci. 2003 Dec 17;23(37):11628–40.
Fourcaud-Trocmé, Nicolas, et al. “How spike generation mechanisms determine the neuronal response to fluctuating inputs.J Neurosci, vol. 23, no. 37, Dec. 2003, pp. 11628–40. Pubmed, doi:10.1523/JNEUROSCI.23-37-11628.2003.
Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N. How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci. 2003 Dec 17;23(37):11628–11640.

Published In

J Neurosci

DOI

EISSN

1529-2401

Publication Date

December 17, 2003

Volume

23

Issue

37

Start / End Page

11628 / 11640

Location

United States

Related Subject Headings

  • Sodium Channels
  • Neurons
  • Neurology & Neurosurgery
  • Models, Neurological
  • Kinetics
  • Electric Conductivity
  • Action Potentials
  • 3209 Neurosciences
  • 17 Psychology and Cognitive Sciences
  • 11 Medical and Health Sciences