
Slicing mixed bing-whitehead doubles
Publication
, Journal Article
Levine, AS
Published in: Journal of Topology
January 1, 2012
We show that if K is any knot whose Ozsváth-Szabó concordance invariant T (K) is positive, the all-positive Whitehead double of any iterated Bing double of K is topologically but not smoothly slice. We also show that the all-positive Whitehead double of any iterated Bing double of the Hopf link (for example, the all-positive Whitehead double of the Borromean rings) is not smoothly slice; it is not known whether these links are topologically slice. © 2012 London Mathematical Society.
Duke Scholars
Published In
Journal of Topology
DOI
EISSN
1753-8424
ISSN
1753-8416
Publication Date
January 1, 2012
Volume
5
Issue
3
Start / End Page
713 / 726
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Levine, A. S. (2012). Slicing mixed bing-whitehead doubles. Journal of Topology, 5(3), 713–726. https://doi.org/10.1112/jtopol/jts019
Levine, A. S. “Slicing mixed bing-whitehead doubles.” Journal of Topology 5, no. 3 (January 1, 2012): 713–26. https://doi.org/10.1112/jtopol/jts019.
Levine AS. Slicing mixed bing-whitehead doubles. Journal of Topology. 2012 Jan 1;5(3):713–26.
Levine, A. S. “Slicing mixed bing-whitehead doubles.” Journal of Topology, vol. 5, no. 3, Jan. 2012, pp. 713–26. Scopus, doi:10.1112/jtopol/jts019.
Levine AS. Slicing mixed bing-whitehead doubles. Journal of Topology. 2012 Jan 1;5(3):713–726.

Published In
Journal of Topology
DOI
EISSN
1753-8424
ISSN
1753-8416
Publication Date
January 1, 2012
Volume
5
Issue
3
Start / End Page
713 / 726
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics