A combinatorial spanning tree model for knot Floer homology
Publication
, Journal Article
Baldwin, JA; Levine, AS
Published in: Advances in Mathematics
October 1, 2012
We iterate Manolescu's unoriented skein exact triangle in knot Floer homology with coefficients in the field of rational functions over Z/2Z. The result is a spectral sequence which converges to a stabilized version of δ-graded knot Floer homology. The (E
Duke Scholars
Published In
Advances in Mathematics
DOI
EISSN
1090-2082
ISSN
0001-8708
Publication Date
October 1, 2012
Volume
231
Issue
3-4
Start / End Page
1886 / 1939
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Baldwin, J. A., & Levine, A. S. (2012). A combinatorial spanning tree model for knot Floer homology. Advances in Mathematics, 231(3–4), 1886–1939. https://doi.org/10.1016/j.aim.2012.06.006
Baldwin, J. A., and A. S. Levine. “A combinatorial spanning tree model for knot Floer homology.” Advances in Mathematics 231, no. 3–4 (October 1, 2012): 1886–1939. https://doi.org/10.1016/j.aim.2012.06.006.
Baldwin JA, Levine AS. A combinatorial spanning tree model for knot Floer homology. Advances in Mathematics. 2012 Oct 1;231(3–4):1886–939.
Baldwin, J. A., and A. S. Levine. “A combinatorial spanning tree model for knot Floer homology.” Advances in Mathematics, vol. 231, no. 3–4, Oct. 2012, pp. 1886–939. Scopus, doi:10.1016/j.aim.2012.06.006.
Baldwin JA, Levine AS. A combinatorial spanning tree model for knot Floer homology. Advances in Mathematics. 2012 Oct 1;231(3–4):1886–1939.
Published In
Advances in Mathematics
DOI
EISSN
1090-2082
ISSN
0001-8708
Publication Date
October 1, 2012
Volume
231
Issue
3-4
Start / End Page
1886 / 1939
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0101 Pure Mathematics