Global regularity for 1D eulerian dynamics with singular interaction forces
The Euler-Poisson-alignment (EPA) system appears in mathematical biology and is used to model, in a hydrodynamic limit, a set of agents interacting through mutual attraction/repulsion as well as alignment forces. We consider one-dimensional EPA system with a class of singular alignment terms as well as natural attraction/repulsion terms. The singularity of the alignment kernel produces an interesting effect regularizing the solutions of the equation and leading to global regularity for wide range of initial data. This was recently observed in [Do et al., Arch. Ration. Mech. Anal., 228(2018), pp. 1-37]. Our goal in this paper is to generalize the result and to incorporate the attractive/repulsive potential. We prove that global regularity persists for these more general models.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics