MO‐EE‐A2‐04: A Framework to Determine the Risk of Developing Pneumonitis in Lung Cancer Patients Undergoing Radiotherapy
Purpose: To determine which dose and non‐dose features of patients undergoing thoracic radiotherapy best predict the incidence of possible lung pneumonitis and to estimate the corresponding risk of developing pneumonitis. Method and Materials: The study employed a database of 235 patients, out of which 34 were diagnosed with Grade 2+ pneumonitis. A total of 94 dose and non‐dose features of each patient were analyzed. To determine the most significant features likely to affect patient outcome, a two‐fold optimization approach was developed. First, the feature values were evaluated by four machine learning models for accurate prediction. The model accuracy was measured in terms of tenfold cross‐validation‐based area under ROC curve (AUC). Next, the ROCs of the four models were combined. Towards that end, a Bayesian decision fusion methodology was developed. Finally, based on the combined ROC, the fusion model isolated the set of most significant features and also computed patient‐specific risk of injury. Results: Out of 94 original features, 27 were selected by the four models. AUC values corresponding to the four models were 0.75, 0.70, 0.79, and 0.73, respectively. Most notably, when the four models were combined, the AUC improved to 0.85. Furthermore, the fusion model identified only six features as most significant. They consisted of two dose features: EUD (a=2) and V
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nuclear Medicine & Medical Imaging
- 5105 Medical and biological physics
- 4003 Biomedical engineering
- 1112 Oncology and Carcinogenesis
- 0903 Biomedical Engineering
- 0299 Other Physical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nuclear Medicine & Medical Imaging
- 5105 Medical and biological physics
- 4003 Biomedical engineering
- 1112 Oncology and Carcinogenesis
- 0903 Biomedical Engineering
- 0299 Other Physical Sciences