Adapting range migration techniques for imaging with metasurface antennas: Analysis and limitations
Dynamic metasurface antennas are planar structures that exhibit remarkable capabilities in controlling electromagnetic wave-fronts, advantages which are particularly attractive for microwave imaging. These antennas exhibit strong frequency dispersion and produce diverse radiation patterns. Such behavior presents unique challenges for integration with conventional imaging algorithms. We analyze an adapted version of the range migration algorithm (RMA) for use with dynamic metasurfaces in image reconstruction. Focusing on the the proposed pre-processing step, that ultimately allows a fast processing of the backscattered signal in the spatial frequency domain from which the fast Fourier transform can efficiently reconstruct the scene. Numerical studies illustrate imaging performance using both conventional methods and the adapted RMA, demonstrating that the RMA can reconstruct images with comparable quality in a fraction of the time. In this paper, we demonstrate the capabilities of the algorithm as a fast reconstruction tool, and we analyze the limitations of the presented technique in terms of image quality.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering