Multiscale modelling of the composite reinforced foam core of a 3D sandwich structure
A key objective dealing with 3D sandwich structures is to maximize the through-thickness stiffness, the strength of the core and the core to faces adhesion. The Napco® technology was especially designed for improving such material properties and is under investigation in this paper. In particular, the potential of the process is characterized using a micromechanical modelling combined to a parametric probabilistic model. An experimental analysis is further detailed and validates the theoretical estimates of the core-related elastic properties. It is readily shown that the technology is able to produce parts with significantly improved mechanical properties. Finally, thanks to the probabilistic aspect of the modelling, the study allows to establish a link between the randomness of the process and the uncertainties of the final mechanical properties. Thus, the present approach can be used to optimize the technology as well as to properly design structures. © 2008 Elsevier Ltd. All rights reserved.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Materials
- 40 Engineering
- 09 Engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Materials
- 40 Engineering
- 09 Engineering