Vector Diffusion Maps and the Connection Laplacian.
We introduce vector diffusion maps (VDM), a new mathematical framework for organizing and analyzing massive high-dimensional data sets, images, and shapes. VDM is a mathematical and algorithmic generalization of diffusion maps and other nonlinear dimensionality reduction methods, such as LLE, ISOMAP, and Laplacian eigenmaps. While existing methods are either directly or indirectly related to the heat kernel for functions over the data, VDM is based on the heat kernel for vector fields. VDM provides tools for organizing complex data sets, embedding them in a low-dimensional space, and interpolating and regressing vector fields over the data. In particular, it equips the data with a metric, which we refer to as the vector diffusion distance. In the manifold learning setup, where the data set is distributed on a low-dimensional manifold ℳ d embedded in ℝ p , we prove the relation between VDM and the connection Laplacian operator for vector fields over the manifold.
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics