Skip to main content
Journal cover image

Automatic detection of omissions in medication lists.

Publication ,  Journal Article
Hasan, S; Duncan, GT; Neill, DB; Padman, R
Published in: Journal of the American Medical Informatics Association : JAMIA
July 2011

Evidence suggests that the medication lists of patients are often incomplete and could negatively affect patient outcomes. In this article, the authors propose the application of collaborative filtering methods to the medication reconciliation task. Given a current medication list for a patient, the authors employ collaborative filtering approaches to predict drugs the patient could be taking but are missing from their observed list.The collaborative filtering approach presented in this paper emerges from the insight that an omission in a medication list is analogous to an item a consumer might purchase from a product list. Online retailers use collaborative filtering to recommend relevant products using retrospective purchase data. In this article, the authors argue that patient information in electronic medical records, combined with artificial intelligence methods, can enhance medication reconciliation. The authors formulate the detection of omissions in medication lists as a collaborative filtering problem. Detection of omissions is accomplished using several machine-learning approaches. The effectiveness of these approaches is evaluated using medication data from three long-term care centers. The authors also propose several decision-theoretic extensions to the methodology for incorporating medical knowledge into recommendations.Results show that collaborative filtering identifies the missing drug in the top-10 list about 40-50% of the time and the therapeutic class of the missing drug 50%-65% of the time at the three clinics in this study.Results suggest that collaborative filtering can be a valuable tool for reconciling medication lists, complementing currently recommended process-driven approaches. However, a one-size-fits-all approach is not optimal, and consideration should be given to context (eg, types of patients and drug regimens) and consequence (eg, the impact of omission on outcomes).

Duke Scholars

Published In

Journal of the American Medical Informatics Association : JAMIA

DOI

EISSN

1527-974X

ISSN

1067-5027

Publication Date

July 2011

Volume

18

Issue

4

Start / End Page

449 / 458

Related Subject Headings

  • Principal Component Analysis
  • Medication Systems
  • Medication Reconciliation
  • Medical Informatics
  • Logistic Models
  • Information Storage and Retrieval
  • Humans
  • Electronic Health Records
  • Drug Therapy, Computer-Assisted
  • Computer Simulation
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Hasan, S., Duncan, G. T., Neill, D. B., & Padman, R. (2011). Automatic detection of omissions in medication lists. Journal of the American Medical Informatics Association : JAMIA, 18(4), 449–458. https://doi.org/10.1136/amiajnl-2011-000106
Hasan, Sharique, George T. Duncan, Daniel B. Neill, and Rema Padman. “Automatic detection of omissions in medication lists.Journal of the American Medical Informatics Association : JAMIA 18, no. 4 (July 2011): 449–58. https://doi.org/10.1136/amiajnl-2011-000106.
Hasan S, Duncan GT, Neill DB, Padman R. Automatic detection of omissions in medication lists. Journal of the American Medical Informatics Association : JAMIA. 2011 Jul;18(4):449–58.
Hasan, Sharique, et al. “Automatic detection of omissions in medication lists.Journal of the American Medical Informatics Association : JAMIA, vol. 18, no. 4, July 2011, pp. 449–58. Epmc, doi:10.1136/amiajnl-2011-000106.
Hasan S, Duncan GT, Neill DB, Padman R. Automatic detection of omissions in medication lists. Journal of the American Medical Informatics Association : JAMIA. 2011 Jul;18(4):449–458.
Journal cover image

Published In

Journal of the American Medical Informatics Association : JAMIA

DOI

EISSN

1527-974X

ISSN

1067-5027

Publication Date

July 2011

Volume

18

Issue

4

Start / End Page

449 / 458

Related Subject Headings

  • Principal Component Analysis
  • Medication Systems
  • Medication Reconciliation
  • Medical Informatics
  • Logistic Models
  • Information Storage and Retrieval
  • Humans
  • Electronic Health Records
  • Drug Therapy, Computer-Assisted
  • Computer Simulation