Nitrous oxide vibrational energy relaxation is a probe of interfacial water in lipid bilayers
Ultrafast infrared spectroscopy of N2O is shown to be a sensitive probe of hydrophobic and aqueous sites in lipid bilayers. Distinct rates of VER of the ν3 antisymmetric stretching mode of N 2O can be distinguished for N2O solvated in the acyl tail, interfacial water, and bulk water regions of hydrated dioleoylphosphatidylcholine (DOPC) bilayers. The lifetime of the interfacial N2O population is hydration-dependent. This effect is attributed to changes in the density of intermolecular states resonant with the ν3 band (∼2230 cm-1) resulting from oriented interfacial water molecules near the lipid phosphate. Thus, the N2O VER rate becomes a novel and experimentally convenient tool for reporting on the structure and dynamics of interfacial water in lipids and, potentially, in other biological systems. © 2008 American Chemical Society.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences