Symmetric interdiction for matching problems
Motivated by denial-of-service network attacks, we introduce the symmetric interdiction model, where both the interdictor and the optimizer are subject to the same constraints of the underlying optimization problem. We give a general framework that relates optimization to symmetric interdiction for a broad class of optimization problems. We then study the symmetric matching interdiction problem - with applications in traffic engineering - in more detail. This problem can be simply stated as follows: find a matching whose removal minimizes the size of the maximum matching in the remaining graph. We show that this problem is APX-hard, and obtain a 3/2- approximation algorithm that improves on the approximation guarantee provided by the general framework.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Related Subject Headings
- 46 Information and computing sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Related Subject Headings
- 46 Information and computing sciences