A K-Band Backscatter Fiducial for Continuous Calibration in Coherent Millimeter-Wave Imaging
We present a modulated ultrawideband backscatter calibration target (fiducial) intended for group delay calibration in large-aperture multitransceiver millimeter-wave imagers. The fiducial is designed to resemble a modulated point scatterer across the K-band (17.5-26.5 GHz). Multiple such fiducials may be used to mitigate thermal and mechanical drift across multiple transceivers comprising the imager. This approach allows tracking and removing both time-varying amplitude and phase drift in the RF hardware and associated cables. Backscatter modulation of the fiducial allows the system to separate the fiducial from the imaged scene and clutter in the environment. We show that the -10 dB beamwidth of the proposed fiducial is approximately 84° along the azimuth plane and 60° along the elevation plane. A proof of concept group delay calibration experiment is presented for a K-band laboratory setup, where a single fiducial and a metal plate target are placed in a scene together. After the backscatter-based calibration, the measured range error of the metal plate at a two-way slant distance of 70.54 cm is reduced to only 1.06 mm (0.15% position error).
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 5103 Classical physics
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 5103 Classical physics
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering