Salt Responsive Morphologies of ssDNA-Based Triblock Polyelectrolytes in Semi-Dilute Regime: Effect of Volume Fractions and Polyelectrolyte Length.
A comprehensive study is reported on the effect of salt concentration, polyelectrolyte block length, and polymer concentration on the morphology and structural properties of nanoaggregates self-assembled from BAB single-strand DNA (ssDNA) triblock polynucleotides in which A represents polyelectrolyte blocks and B represents hydrophobic neutral blocks. A morphological phase diagram above the gelation point is developed as a function of solvent ionic strength and polyelectrolyte block length utilizing an implicit solvent ionic strength method for dissipative particle dynamics simulations. As the solvent ionic strength increases, the self-assembled DNA network structures shrinks considerably, leading to a morphological transition from a micellar network to worm-like or hamburger-shape aggregates. This study provides insight into the network morphology and its changes by calculating the aggregation number, number of hydrophobic cores, and percentage of bridge chains in the network. The simulation results are corroborated through cryogenic transmission electron microscopy on the example of the self-assembly of ssDNA triblocks.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Solvents
- Sodium Chloride
- Polymers
- Polyelectrolytes
- Osmolar Concentration
- Micelles
- Hydrophobic and Hydrophilic Interactions
- DNA, Single-Stranded
- Cryoelectron Microscopy
- 40 Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Solvents
- Sodium Chloride
- Polymers
- Polyelectrolytes
- Osmolar Concentration
- Micelles
- Hydrophobic and Hydrophilic Interactions
- DNA, Single-Stranded
- Cryoelectron Microscopy
- 40 Engineering