
A Marginalized Zero-inflated Poisson Regression Model with Random Effects.
Public health research often concerns relationships between exposures and correlated count outcomes. When counts exhibit more zeros than expected under Poisson sampling, the zero-inflated Poisson (ZIP) model with random effects may be used. However, the latent class formulation of the ZIP model can make marginal inference on the sampled population challenging. This article presents a marginalized ZIP model with random effects to directly model the mean of the mixture distribution consisting of 'susceptible' individuals and excess zeroes, providing straightforward inference for overall exposure effects. Simulations evaluate finite sample properties, and the new methods are applied to a motivational interviewing-based safer sex intervention trial, designed to reduce the number of unprotected sexual acts.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0104 Statistics
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0104 Statistics