Skip to main content
release_alert
Welcome to the new Scholars 3.0! Read about new features and let us know what you think.
cancel

Compressed sensing under optimal quantization

Publication ,  Conference
Kipnis, A; Reeves, G; Eldar, YC; Goldsmith, AJ
Published in: Ieee International Symposium on Information Theory Proceedings
August 9, 2017

We consider the problem of recovering a sparse vector from a quantized or a lossy compressed version of its noisy random linear projections. We characterize the minimal distortion in this recovery as a function of the sampling ratio, the sparsity rate, the noise intensity and the total number of bits in the quantized representation. We first derive a singe-letter expression that can be seen as the indirect distortion-rate function of the sparse source observed through a Gaussian channel whose signal-to-noise ratio is derived from these parameters. Under the replica symmetry postulation, we prove that there exists a quantization scheme that attains this expression in the asymptotic regime of large system dimensions. In addition, we prove a converse demonstrating that the MMSE in estimating any fixed sub-block of the source from the quantized measurements at a fixed number of bits does not exceed this expression as the system dimensions go to infinity. Thus, under these conditions, the expression we derive describes the excess distortion incurred in encoding the source vector from its noisy random linear projections in lieu of the full source information.

Duke Scholars

Published In

Ieee International Symposium on Information Theory Proceedings

DOI

ISSN

2157-8095

ISBN

9781509040964

Publication Date

August 9, 2017

Start / End Page

2148 / 2152
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kipnis, A., Reeves, G., Eldar, Y. C., & Goldsmith, A. J. (2017). Compressed sensing under optimal quantization. In Ieee International Symposium on Information Theory  Proceedings (pp. 2148–2152). https://doi.org/10.1109/ISIT.2017.8006909
Kipnis, A., G. Reeves, Y. C. Eldar, and A. J. Goldsmith. “Compressed sensing under optimal quantization.” In Ieee International Symposium on Information Theory  Proceedings, 2148–52, 2017. https://doi.org/10.1109/ISIT.2017.8006909.
Kipnis A, Reeves G, Eldar YC, Goldsmith AJ. Compressed sensing under optimal quantization. In: Ieee International Symposium on Information Theory  Proceedings. 2017. p. 2148–52.
Kipnis, A., et al. “Compressed sensing under optimal quantization.” Ieee International Symposium on Information Theory  Proceedings, 2017, pp. 2148–52. Scopus, doi:10.1109/ISIT.2017.8006909.
Kipnis A, Reeves G, Eldar YC, Goldsmith AJ. Compressed sensing under optimal quantization. Ieee International Symposium on Information Theory  Proceedings. 2017. p. 2148–2152.

Published In

Ieee International Symposium on Information Theory Proceedings

DOI

ISSN

2157-8095

ISBN

9781509040964

Publication Date

August 9, 2017

Start / End Page

2148 / 2152