Skip to main content
Bayesian Bounds for Parameter Estimation and Nonlinear Filtering Tracking

Efficient computation of the bayesian cramerrao bound on estimating parameters of markov models

Publication ,  Chapter
Tabrikian, J; Krolik, JL
January 1, 2007

This paper presents a novel method for calculating the Hybrid Cramer-Rao lower bound (HCRLB) when the statistical model for the data has a Markovian nature. The method applies to both the non-linear/non-Gaussian as well as linear/Gaussian model. The approach solves the required expectation over unknown random parameters by several one-dimensional integrals computed recursively, thus simplifying a computationally-intensive multi-dimensional integration. The method is applied to the problem of refractivity estimation using radar clutter from the sea surface, where the backscatter cross section is assumed to be a Markov process in range. The HCRLB is evaluated and compared to the performance of the corresponding maximum a-posteriori estimator. Simulation results indicate that the HCRLB provides a tight lower bound in this application.

Duke Scholars

DOI

Publication Date

January 1, 2007

Start / End Page

371 / 374
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Tabrikian, J., & Krolik, J. L. (2007). Efficient computation of the bayesian cramerrao bound on estimating parameters of markov models. In Bayesian Bounds for Parameter Estimation and Nonlinear Filtering Tracking (pp. 371–374). https://doi.org/10.1109/9780470544198.ch32
Tabrikian, J., and J. L. Krolik. “Efficient computation of the bayesian cramerrao bound on estimating parameters of markov models.” In Bayesian Bounds for Parameter Estimation and Nonlinear Filtering Tracking, 371–74, 2007. https://doi.org/10.1109/9780470544198.ch32.
Tabrikian J, Krolik JL. Efficient computation of the bayesian cramerrao bound on estimating parameters of markov models. In: Bayesian Bounds for Parameter Estimation and Nonlinear Filtering Tracking. 2007. p. 371–4.
Tabrikian, J., and J. L. Krolik. “Efficient computation of the bayesian cramerrao bound on estimating parameters of markov models.” Bayesian Bounds for Parameter Estimation and Nonlinear Filtering Tracking, 2007, pp. 371–74. Scopus, doi:10.1109/9780470544198.ch32.
Tabrikian J, Krolik JL. Efficient computation of the bayesian cramerrao bound on estimating parameters of markov models. Bayesian Bounds for Parameter Estimation and Nonlinear Filtering Tracking. 2007. p. 371–374.

DOI

Publication Date

January 1, 2007

Start / End Page

371 / 374