Skip to main content
Journal cover image

Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space

Publication ,  Journal Article
Regenauer-Lieb, K; Bunger, A; Chua, HT; Dyskin, A; Fusseis, F; Gaede, O; Jeffrey, R; Karrech, A; Kohl, T; Liu, J; Lyakhovsky, V; Pasternak, E ...
Published in: Journal of Earth Science
February 1, 2015

Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.

Duke Scholars

Published In

Journal of Earth Science

DOI

EISSN

1867-111X

ISSN

1674-487X

Publication Date

February 1, 2015

Volume

26

Issue

1

Start / End Page

2 / 10
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Regenauer-Lieb, K., Bunger, A., Chua, H. T., Dyskin, A., Fusseis, F., Gaede, O., … Zhang, X. (2015). Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space. Journal of Earth Science, 26(1), 2–10. https://doi.org/10.1007/s12583-015-0515-1
Regenauer-Lieb, K., A. Bunger, H. T. Chua, A. Dyskin, F. Fusseis, O. Gaede, R. Jeffrey, et al. “Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space.” Journal of Earth Science 26, no. 1 (February 1, 2015): 2–10. https://doi.org/10.1007/s12583-015-0515-1.
Regenauer-Lieb K, Bunger A, Chua HT, Dyskin A, Fusseis F, Gaede O, et al. Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space. Journal of Earth Science. 2015 Feb 1;26(1):2–10.
Regenauer-Lieb, K., et al. “Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space.” Journal of Earth Science, vol. 26, no. 1, Feb. 2015, pp. 2–10. Scopus, doi:10.1007/s12583-015-0515-1.
Regenauer-Lieb K, Bunger A, Chua HT, Dyskin A, Fusseis F, Gaede O, Jeffrey R, Karrech A, Kohl T, Liu J, Lyakhovsky V, Pasternak E, Podgorney R, Poulet T, Rahman S, Schrank C, Trefry M, Veveakis M, Wu B, Yuen DA, Wellmann F, Zhang X. Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space. Journal of Earth Science. 2015 Feb 1;26(1):2–10.
Journal cover image

Published In

Journal of Earth Science

DOI

EISSN

1867-111X

ISSN

1674-487X

Publication Date

February 1, 2015

Volume

26

Issue

1

Start / End Page

2 / 10