Skip to main content
Journal cover image

The effect of electrostatic and gravity force on offset wire inside tube

Publication ,  Journal Article
Oh, SH; Hazineh, D; Wang, C
Published in: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
April 21, 2018

In a straw-tube detector, a wire that is offset with respect to the tube axis experiences a Coulomb force when high voltage is applied between the anode wire and the tube. This force results in a shifting of the wire and straw, in addition to the gravitational sag, and is a function of the tube and wire radius, initial offset, high voltage, tension and length. The presence of such effects is well known, but the precise magnitude of the shift for the anode wires under conditions of detector operation have not been previously documented with measurable confidence. In this work, we provide the first systematic measurements for the wire shift in straw-tube detectors due to gravity and the electrostatic force using an x-ray scanner developed for the Mu2e experiment. The data are compared to the solutions of the differential equations governing the system, and we find a good match between the two. The solutions can predict the final wire and straw positions from the initial positions measured without the high voltage, and the final wire and straw positions can then be used as an input to the track reconstruction software to improve the track position resolution.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

DOI

ISSN

0168-9002

Publication Date

April 21, 2018

Volume

888

Start / End Page

79 / 87

Related Subject Headings

  • Nuclear & Particles Physics
  • 5106 Nuclear and plasma physics
  • 0299 Other Physical Sciences
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
  • 0201 Astronomical and Space Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Oh, S. H., Hazineh, D., & Wang, C. (2018). The effect of electrostatic and gravity force on offset wire inside tube. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 888, 79–87. https://doi.org/10.1016/j.nima.2018.01.017
Oh, S. H., D. Hazineh, and C. Wang. “The effect of electrostatic and gravity force on offset wire inside tube.” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 888 (April 21, 2018): 79–87. https://doi.org/10.1016/j.nima.2018.01.017.
Oh SH, Hazineh D, Wang C. The effect of electrostatic and gravity force on offset wire inside tube. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018 Apr 21;888:79–87.
Oh, S. H., et al. “The effect of electrostatic and gravity force on offset wire inside tube.” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 888, Apr. 2018, pp. 79–87. Scopus, doi:10.1016/j.nima.2018.01.017.
Oh SH, Hazineh D, Wang C. The effect of electrostatic and gravity force on offset wire inside tube. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018 Apr 21;888:79–87.
Journal cover image

Published In

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

DOI

ISSN

0168-9002

Publication Date

April 21, 2018

Volume

888

Start / End Page

79 / 87

Related Subject Headings

  • Nuclear & Particles Physics
  • 5106 Nuclear and plasma physics
  • 0299 Other Physical Sciences
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
  • 0201 Astronomical and Space Sciences