Skip to main content
Journal cover image

Comparative Persistence of Engineered Nanoparticles in a Complex Aquatic Ecosystem.

Publication ,  Journal Article
Espinasse, BP; Geitner, NK; Schierz, A; Therezien, M; Richardson, CJ; Lowry, GV; Ferguson, L; Wiesner, MR
Published in: Environmental science & technology
April 2018

During nanoparticle environmental exposure, presence in the water column is expected to dominate long distance transport as well as initial aquatic organism exposure. Much work has been done to understand potential ecological and toxicological effects of these particles. However, little has been done to date to understand the comparative persistence of engineered particles in realistic environmental systems. Presented here is a study of the water column lifetimes of 3 different classes of nanoparticles prepared with a combination of surface chemistries in wetland mesocosms. We find that, when introduced as a single pulse, all tested nanoparticles persist in the water column for periods ranging from 36 h to 10 days. Specifically, we found a range of nanoparticle residence times in the order Ag > TiO2 > SWCNT > CeO2. We further explored the hypothesis that heteroaggregation was the primary driving factor for nanoparticle removal from the water column in all but one case, and that values of surface affinity (α) measured in the laboratory appear to predict relative removal rates when heteroaggregation dominates. Though persistence in the water column was relatively short in all cases, differences in persistence may play a role in determining nanoparticle fate and impacts and were poorly predicted by currently prevailing benchmarks such as particle surface preparation.

Duke Scholars

Published In

Environmental science & technology

DOI

EISSN

1520-5851

ISSN

0013-936X

Publication Date

April 2018

Volume

52

Issue

7

Start / End Page

4072 / 4078

Related Subject Headings

  • Water Pollutants, Chemical
  • Water
  • Nanoparticles
  • Environmental Sciences
  • Ecosystem
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Espinasse, B. P., Geitner, N. K., Schierz, A., Therezien, M., Richardson, C. J., Lowry, G. V., … Wiesner, M. R. (2018). Comparative Persistence of Engineered Nanoparticles in a Complex Aquatic Ecosystem. Environmental Science & Technology, 52(7), 4072–4078. https://doi.org/10.1021/acs.est.7b06142
Espinasse, Benjamin P., Nicholas K. Geitner, Ariette Schierz, Mathieu Therezien, Curtis J. Richardson, Gregory V. Lowry, Lee Ferguson, and Mark R. Wiesner. “Comparative Persistence of Engineered Nanoparticles in a Complex Aquatic Ecosystem.Environmental Science & Technology 52, no. 7 (April 2018): 4072–78. https://doi.org/10.1021/acs.est.7b06142.
Espinasse BP, Geitner NK, Schierz A, Therezien M, Richardson CJ, Lowry GV, et al. Comparative Persistence of Engineered Nanoparticles in a Complex Aquatic Ecosystem. Environmental science & technology. 2018 Apr;52(7):4072–8.
Espinasse, Benjamin P., et al. “Comparative Persistence of Engineered Nanoparticles in a Complex Aquatic Ecosystem.Environmental Science & Technology, vol. 52, no. 7, Apr. 2018, pp. 4072–78. Epmc, doi:10.1021/acs.est.7b06142.
Espinasse BP, Geitner NK, Schierz A, Therezien M, Richardson CJ, Lowry GV, Ferguson L, Wiesner MR. Comparative Persistence of Engineered Nanoparticles in a Complex Aquatic Ecosystem. Environmental science & technology. 2018 Apr;52(7):4072–4078.
Journal cover image

Published In

Environmental science & technology

DOI

EISSN

1520-5851

ISSN

0013-936X

Publication Date

April 2018

Volume

52

Issue

7

Start / End Page

4072 / 4078

Related Subject Headings

  • Water Pollutants, Chemical
  • Water
  • Nanoparticles
  • Environmental Sciences
  • Ecosystem