Localized orbital scaling correction for systematic elimination of delocalization error in density functional approximations
The delocalization error of popular density functional approximations (DFAs) leads to diversified problems in present-day density functional theory calculations. For achieving a universal elimination of delocalization error, we develop a localized orbital scaling correction (LOSC) framework, which unifies our previously proposed global and local scaling approaches. The LOSC framework accurately characterizes the distributions of global and local fractional electrons, and is thus capable of correcting system energy, energy derivative and electron density in a self-consistent and size-consistent manner. The LOSC-DFAs lead to systematically improved results, including the dissociation of cationic species, the band gaps of molecules and polymer chains, the energy and density changes upon electron addition and removal, and photoemission spectra.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 0703 Crop and Pasture Production
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 0703 Crop and Pasture Production