
A note on one-dimensional time fractional ODEs
Publication
, Journal Article
Feng, Y; Li, L; Liu, JG; Xu, X
Published in: Applied Mathematics Letters
September 1, 2018
In this note, we prove or re-prove several important results regarding one dimensional time fractional ODEs following our previous work Feng et al. [15]. Here we use the definition of Caputo derivative proposed in Li and Liu (2017) [5,7] based on a convolution group. In particular, we establish generalized comparison principles consistent with the new definition of Caputo derivatives. In addition, we establish the full asymptotic behaviors of the solutions for Dcγu=Aup. Lastly, we provide a simplified proof for the strict monotonicity and stability in initial values for the time fractional differential equations with weak assumptions.
Duke Scholars
Published In
Applied Mathematics Letters
DOI
EISSN
1873-5452
ISSN
0893-9659
Publication Date
September 1, 2018
Volume
83
Start / End Page
87 / 94
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Feng, Y., Li, L., Liu, J. G., & Xu, X. (2018). A note on one-dimensional time fractional ODEs. Applied Mathematics Letters, 83, 87–94. https://doi.org/10.1016/j.aml.2018.03.015
Feng, Y., L. Li, J. G. Liu, and X. Xu. “A note on one-dimensional time fractional ODEs.” Applied Mathematics Letters 83 (September 1, 2018): 87–94. https://doi.org/10.1016/j.aml.2018.03.015.
Feng Y, Li L, Liu JG, Xu X. A note on one-dimensional time fractional ODEs. Applied Mathematics Letters. 2018 Sep 1;83:87–94.
Feng, Y., et al. “A note on one-dimensional time fractional ODEs.” Applied Mathematics Letters, vol. 83, Sept. 2018, pp. 87–94. Scopus, doi:10.1016/j.aml.2018.03.015.
Feng Y, Li L, Liu JG, Xu X. A note on one-dimensional time fractional ODEs. Applied Mathematics Letters. 2018 Sep 1;83:87–94.

Published In
Applied Mathematics Letters
DOI
EISSN
1873-5452
ISSN
0893-9659
Publication Date
September 1, 2018
Volume
83
Start / End Page
87 / 94
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics