Monitoring Chemical Reactions with Terahertz Rotational Spectroscopy
Rotational spectroscopy is introduced as a new in situ method for monitoring gas-phase reactants and products during chemical reactions. Exploiting its unambiguous molecular recognition specificity and extraordinary detection sensitivity, rotational spectroscopy at terahertz frequencies was used to monitor the decomposition of carbonyl sulfide (OCS) over an aluminum nanocrystal (AlNC) plasmonic photocatalyst. The intrinsic surface oxide on AlNCs is discovered to have a large number of strongly basic sites that are effective for mediating OCS decomposition. Spectroscopic monitoring revealed two different photothermal decomposition pathways for OCS, depending on the absence or presence of H
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 0906 Electrical and Electronic Engineering
- 0206 Quantum Physics
- 0205 Optical Physics
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 0906 Electrical and Electronic Engineering
- 0206 Quantum Physics
- 0205 Optical Physics