Experimental study of parametric dependence of electron-scale turbulence in a spherical tokamak
Electron-scale turbulence is predicted to drive anomalous electron thermal transport. However, experimental study of its relation with transport is still in its early stage. On the National Spherical Tokamak Experiment (NSTX), electron-scale density fluctuations are studied with a novel tangential microwave scattering system with high radial resolution of ±2 cm. Here, we report a study of parametric dependence of electron-scale turbulence in NSTX H-mode plasmas. The dependence on density gradient is studied through the observation of a large density gradient variation in the core induced by an edge localized mode (ELM) event, where we found the first clear experimental evidence of density gradient stabilization of electron-gyro scale turbulence in a fusion plasma. This observation, coupled with linear gyro-kinetic calculations, leads to the identification of the observed instability as toroidal electron temperature gradient (ETG) modes. It is observed that longer wavelength ETG modes, k ⊥ ρ
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Fluids & Plasmas
- 5109 Space sciences
- 5106 Nuclear and plasma physics
- 0203 Classical Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Fluids & Plasmas
- 5109 Space sciences
- 5106 Nuclear and plasma physics
- 0203 Classical Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences