Networking low-power energy harvesting devices: Measurements and algorithms
Recent advances in energy harvesting materials and ultra-low-power communications will soon enable the realization of networks composed of energy harvesting devices. These devices will operate using very low ambient energy, such as indoor light energy. We focus on characterizing the energy availability in indoor environments and on developing energy allocation algorithms for energy harvesting devices. First, we present results of our long-term indoor radiant energy measurements, which provide important inputs required for algorithm and system design (e.g., determining the required battery sizes). Then, we focus on algorithm development, which requires nontraditional approaches, since energy harvesting shifts the nature of energy-aware protocols from minimizing energy expenditure to optimizing it. Moreover, in many cases, different energy storage types (rechargeable battery and a capacitor) require different algorithms. We develop algorithms for determining time fair energy allocation in systems with predictable energy inputs, as well as in systems where energy inputs are stochastic. © 2011 IEEE.