A granular activated carbon/electrochemical hybrid system for onsite treatment and reuse of blackwater.
Over 1/3 of the global population lacks access to improved sanitation, leading to disease, death, and impaired economic development. Our group is working to develop rapidly deployable, cost-effective, and sustainable solutions to this global problem that do not require significant investments in infrastructure. Previously, we demonstrated the feasibility of a toilet system that recycles blackwater for onsite reuse as flush water, in which the blackwater is electrochemically treated to remove pathogens due to fecal contamination. However, this process requires considerable energy (48-93 kJ/L) to achieve complete disinfection of the process liquid, and the disinfected liquid retains color and chemical oxygen demand (COD) in excess of local discharge standards, negatively impacting user acceptability. Granular activated carbon (GAC) efficiently reduces COD in concentrated wastewaters. We hypothesized that reduction of COD with GAC prior to electrochemical treatment would both improve disinfection energy efficiency and user acceptability of the treated liquid. Here we describe the development and testing of a hybrid system that combines these technologies and demonstrate its ability to achieve full disinfection with improved energy efficiency and liquid quality more suitable for onsite reuse and/or discharge.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Water Purification
- Wastewater
- Waste Disposal, Fluid
- Recycling
- Equipment Design
- Environmental Engineering
- Electrochemical Techniques
- Disinfection
- Charcoal
- Biological Oxygen Demand Analysis
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Water Purification
- Wastewater
- Waste Disposal, Fluid
- Recycling
- Equipment Design
- Environmental Engineering
- Electrochemical Techniques
- Disinfection
- Charcoal
- Biological Oxygen Demand Analysis