Skip to main content
Journal cover image

Correcting Type Ia Supernova Distances for Selection Biases and Contamination in Photometrically Identified Samples

Publication ,  Journal Article
Kessler, R; Scolnic, D
Published in: Astrophysical Journal
February 10, 2017

We present a new technique to create a bin-averaged Hubble diagram (HD) from photometrically identified SN Ia data. The resulting HD is corrected for selection biases and contamination from core-collapse (CC) SNe, and can be used to infer cosmological parameters. This method, called "BEAMS with Bias Corrections" (BBC), includes two fitting stages. The first BBC fitting stage uses a posterior distribution that includes multiple SN likelihoods, a Monte Carlo simulation to bias-correct the fitted SALT-II parameters, and CC probabilities determined from a machine-learning technique. The BBC fit determines (1) a bin-averaged HD (average distance versus redshift), and (2) the nuisance parameters α and β, which multiply the stretch and color (respectively) to standardize the SN brightness. In the second stage, the bin-averaged HD is fit to a cosmological model where priors can be imposed. We perform high-precision tests of the BBC method by simulating large (150,000 event) data samples corresponding to the Dark Energy Survey Supernova Program. Our tests include three models of intrinsic scatter, each with two different CC rates. In the BBC fit, the SALT-II nuisance parameters α and β are recovered to within 1% of their true values. In the cosmology fit, we determine the dark energy equation of state parameter w using a fixed value of ΩM as a prior: averaging over all six tests based on 6 × 150,000 = 900,000 SNe, there is a small w-bias of . Finally, the BBC fitting code is publicly available in the SNANA package.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Astrophysical Journal

DOI

EISSN

1538-4357

ISSN

0004-637X

Publication Date

February 10, 2017

Volume

836

Issue

1

Related Subject Headings

  • Astronomy & Astrophysics
  • 5109 Space sciences
  • 5107 Particle and high energy physics
  • 5101 Astronomical sciences
  • 0306 Physical Chemistry (incl. Structural)
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
  • 0201 Astronomical and Space Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kessler, R., & Scolnic, D. (2017). Correcting Type Ia Supernova Distances for Selection Biases and Contamination in Photometrically Identified Samples. Astrophysical Journal, 836(1). https://doi.org/10.3847/1538-4357/836/1/56
Kessler, R., and D. Scolnic. “Correcting Type Ia Supernova Distances for Selection Biases and Contamination in Photometrically Identified Samples.” Astrophysical Journal 836, no. 1 (February 10, 2017). https://doi.org/10.3847/1538-4357/836/1/56.
Kessler, R., and D. Scolnic. “Correcting Type Ia Supernova Distances for Selection Biases and Contamination in Photometrically Identified Samples.” Astrophysical Journal, vol. 836, no. 1, Feb. 2017. Scopus, doi:10.3847/1538-4357/836/1/56.
Journal cover image

Published In

Astrophysical Journal

DOI

EISSN

1538-4357

ISSN

0004-637X

Publication Date

February 10, 2017

Volume

836

Issue

1

Related Subject Headings

  • Astronomy & Astrophysics
  • 5109 Space sciences
  • 5107 Particle and high energy physics
  • 5101 Astronomical sciences
  • 0306 Physical Chemistry (incl. Structural)
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
  • 0201 Astronomical and Space Sciences