Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies
Sodium-ion batteries (SIBs) have been considered as one of the promising alternatives for lithium-ion batteries, owning to the abundant reserve and low cost of sodium-related salts. However, SIBs usually suffer from the sluggish kinetics of Na+ and the serious volume expansion of anode materials, which inevitably restrict the performance of SIBs. Herein, electroconductive wrinkled anatase-phase black titanium oxide nanosheets with rich oxygen vacancies (OVs-TiO
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 4018 Nanotechnology
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry
- 1007 Nanotechnology
- 0912 Materials Engineering
- 0303 Macromolecular and Materials Chemistry
Citation
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 4018 Nanotechnology
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry
- 1007 Nanotechnology
- 0912 Materials Engineering
- 0303 Macromolecular and Materials Chemistry