
Array files for computational chemistry: MP2 energies
A simple message-passing implementation for distributed disk storage, called array files (AF), is described. It is designed primarily for parallelizing computational chemistry applications but it should be useful for any application that handles large amounts of data stored on disk. AF allows transparent distributed storage and access of large data files. An AF consists of a set of logically related records, i.e., blocks of data. It is assumed that the records have the typical dimension of matrices in quantum chemical calculations, i.e., they range from 0.1 to ∼32 MB in size. The individual records are not striped over nodes; each record is stored on a single node. As a simple application, second-order Møller-Plesset (MP2) energies have been implemented using AF. The AF implementation approaches the efficiency of the hand-coded program. MP2 is relatively simple to parallelize but for more complex applications, such as Coupled Cluster energies, the AF system greatly simplifies the programming effort. © 2007 Wiley Periodicals, Inc.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 1007 Nanotechnology
- 0307 Theoretical and Computational Chemistry
- 0306 Physical Chemistry (incl. Structural)
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 1007 Nanotechnology
- 0307 Theoretical and Computational Chemistry
- 0306 Physical Chemistry (incl. Structural)