An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs.
OBJECTIVE: The goal of this study was to describe the development and validation of an artificial intelligence-based, deep learning algorithm (DLA) for the detection of referable diabetic retinopathy (DR). RESEARCH DESIGN AND METHODS: A DLA using a convolutional neural network was developed for automated detection of vision-threatening referable DR (preproliferative DR or worse, diabetic macular edema, or both). The DLA was tested by using a set of 106,244 nonstereoscopic retinal images. A panel of ophthalmologists graded DR severity in retinal photographs included in the development and internal validation data sets (n = 71,043); a reference standard grading was assigned once three graders achieved consistent grading outcomes. For external validation, we tested our DLA using 35,201 images of 14,520 eyes (904 eyes with any DR; 401 eyes with vision-threatening referable DR) from population-based cohorts of Malays, Caucasian Australians, and Indigenous Australians. RESULTS: Among the 71,043 retinal images in the training and validation data sets, 12,329 showed vision-threatening referable DR. In the internal validation data set, the area under the curve (AUC), sensitivity, and specificity of the DLA for vision-threatening referable DR were 0.989, 97.0%, and 91.4%, respectively. Testing against the independent, multiethnic data set achieved an AUC, sensitivity, and specificity of 0.955, 92.5%, and 98.5%, respectively. Among false-positive cases, 85.6% were due to a misclassification of mild or moderate DR. Undetected intraretinal microvascular abnormalities accounted for 77.3% of all false-negative cases. CONCLUSIONS: This artificial intelligence-based DLA can be used with high accuracy in the detection of vision-threatening referable DR in retinal images. This technology offers potential to increase the efficiency and accessibility of DR screening programs.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Sensitivity and Specificity
- Photography
- Middle Aged
- Mass Screening
- Male
- Humans
- Female
- Endocrinology & Metabolism
- Diagnostic Techniques, Ophthalmological
- Diagnosis, Computer-Assisted
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Sensitivity and Specificity
- Photography
- Middle Aged
- Mass Screening
- Male
- Humans
- Female
- Endocrinology & Metabolism
- Diagnostic Techniques, Ophthalmological
- Diagnosis, Computer-Assisted