Sylvester’s problem and mock heegner points
Publication
, Journal Article
Dasgupta, S; Voight, J
Published in: Proceedings of the American Mathematical Society
January 1, 2018
We prove that if p ≡ 4, 7 (mod 9) is prime and 3 is not a cube modulo p, then both of the equations x3 + y3 = p and x3 + y3 = p2 have a solution with x, y ∈ ℚ.
Duke Scholars
Published In
Proceedings of the American Mathematical Society
DOI
EISSN
1088-6826
ISSN
0002-9939
Publication Date
January 1, 2018
Volume
146
Issue
8
Start / End Page
3257 / 3273
Related Subject Headings
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Dasgupta, S., & Voight, J. (2018). Sylvester’s problem and mock heegner points. Proceedings of the American Mathematical Society, 146(8), 3257–3273. https://doi.org/10.1090/proc/14008
Dasgupta, S., and J. Voight. “Sylvester’s problem and mock heegner points.” Proceedings of the American Mathematical Society 146, no. 8 (January 1, 2018): 3257–73. https://doi.org/10.1090/proc/14008.
Dasgupta S, Voight J. Sylvester’s problem and mock heegner points. Proceedings of the American Mathematical Society. 2018 Jan 1;146(8):3257–73.
Dasgupta, S., and J. Voight. “Sylvester’s problem and mock heegner points.” Proceedings of the American Mathematical Society, vol. 146, no. 8, Jan. 2018, pp. 3257–73. Scopus, doi:10.1090/proc/14008.
Dasgupta S, Voight J. Sylvester’s problem and mock heegner points. Proceedings of the American Mathematical Society. 2018 Jan 1;146(8):3257–3273.
Published In
Proceedings of the American Mathematical Society
DOI
EISSN
1088-6826
ISSN
0002-9939
Publication Date
January 1, 2018
Volume
146
Issue
8
Start / End Page
3257 / 3273
Related Subject Headings
- 4904 Pure mathematics
- 0101 Pure Mathematics