Transversals of additive Latin squares
Publication
, Journal Article
Dasgupta, S; Károlyi, G; Serra, O; Szegedy, B
Published in: Israel Journal of Mathematics
January 1, 2001
Let A = {a1,..., ak} and B = {b1,..., bk} be two subsets of an Abelian group G, k ≤ |G|. Snevily conjectured that, when G is of odd order, there is a permutation π ≤ Sk such that the sums ai + bπ(i), 1 ≤ i ≤ k, are pairwise different. Alon showed that the conjecture is true for groups of prime order, even when A is a sequence of k < |G| elements, i.e., by allowing repeated elements in A. In this last sense the result does not hold for other Abelian groups. With a new kind of application of the polynomial method in various finite and infinite fields we extend Alon's result to the groups (Zp)α and Zpα in the case k < p, and verify Snevily's conjecture for every cyclic group of odd order.
Duke Scholars
Published In
Israel Journal of Mathematics
DOI
EISSN
1565-8511
ISSN
0021-2172
Publication Date
January 1, 2001
Volume
126
Start / End Page
17 / 28
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Dasgupta, S., Károlyi, G., Serra, O., & Szegedy, B. (2001). Transversals of additive Latin squares. Israel Journal of Mathematics, 126, 17–28. https://doi.org/10.1007/BF02784149
Dasgupta, S., G. Károlyi, O. Serra, and B. Szegedy. “Transversals of additive Latin squares.” Israel Journal of Mathematics 126 (January 1, 2001): 17–28. https://doi.org/10.1007/BF02784149.
Dasgupta S, Károlyi G, Serra O, Szegedy B. Transversals of additive Latin squares. Israel Journal of Mathematics. 2001 Jan 1;126:17–28.
Dasgupta, S., et al. “Transversals of additive Latin squares.” Israel Journal of Mathematics, vol. 126, Jan. 2001, pp. 17–28. Scopus, doi:10.1007/BF02784149.
Dasgupta S, Károlyi G, Serra O, Szegedy B. Transversals of additive Latin squares. Israel Journal of Mathematics. 2001 Jan 1;126:17–28.
Published In
Israel Journal of Mathematics
DOI
EISSN
1565-8511
ISSN
0021-2172
Publication Date
January 1, 2001
Volume
126
Start / End Page
17 / 28
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics