Skip to main content
Journal cover image

Transversals of additive Latin squares

Publication ,  Journal Article
Dasgupta, S; Károlyi, G; Serra, O; Szegedy, B
Published in: Israel Journal of Mathematics
January 1, 2001

Let A = {a1,..., ak} and B = {b1,..., bk} be two subsets of an Abelian group G, k ≤ |G|. Snevily conjectured that, when G is of odd order, there is a permutation π ≤ Sk such that the sums ai + bπ(i), 1 ≤ i ≤ k, are pairwise different. Alon showed that the conjecture is true for groups of prime order, even when A is a sequence of k < |G| elements, i.e., by allowing repeated elements in A. In this last sense the result does not hold for other Abelian groups. With a new kind of application of the polynomial method in various finite and infinite fields we extend Alon's result to the groups (Zp)α and Zpα in the case k < p, and verify Snevily's conjecture for every cyclic group of odd order.

Duke Scholars

Published In

Israel Journal of Mathematics

DOI

EISSN

1565-8511

ISSN

0021-2172

Publication Date

January 1, 2001

Volume

126

Start / End Page

17 / 28

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 4901 Applied mathematics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Dasgupta, S., Károlyi, G., Serra, O., & Szegedy, B. (2001). Transversals of additive Latin squares. Israel Journal of Mathematics, 126, 17–28. https://doi.org/10.1007/BF02784149
Dasgupta, S., G. Károlyi, O. Serra, and B. Szegedy. “Transversals of additive Latin squares.” Israel Journal of Mathematics 126 (January 1, 2001): 17–28. https://doi.org/10.1007/BF02784149.
Dasgupta S, Károlyi G, Serra O, Szegedy B. Transversals of additive Latin squares. Israel Journal of Mathematics. 2001 Jan 1;126:17–28.
Dasgupta, S., et al. “Transversals of additive Latin squares.” Israel Journal of Mathematics, vol. 126, Jan. 2001, pp. 17–28. Scopus, doi:10.1007/BF02784149.
Dasgupta S, Károlyi G, Serra O, Szegedy B. Transversals of additive Latin squares. Israel Journal of Mathematics. 2001 Jan 1;126:17–28.
Journal cover image

Published In

Israel Journal of Mathematics

DOI

EISSN

1565-8511

ISSN

0021-2172

Publication Date

January 1, 2001

Volume

126

Start / End Page

17 / 28

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 4901 Applied mathematics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics