Skip to main content

Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

Publication ,  Journal Article
Chaney, NW; Herman, JD; Ek, MB; Wood, EF
Published in: Journal of Geophysical Research: Atmospheres
November 27, 2016

With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of Geophysical Research: Atmospheres

DOI

EISSN

2169-8996

ISSN

2169-897X

Publication Date

November 27, 2016

Volume

121

Issue

22

Start / End Page

218 / 235

Related Subject Headings

  • 3702 Climate change science
  • 3701 Atmospheric sciences
  • 0406 Physical Geography and Environmental Geoscience
  • 0401 Atmospheric Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chaney, N. W., Herman, J. D., Ek, M. B., & Wood, E. F. (2016). Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning. Journal of Geophysical Research: Atmospheres, 121(22), 218–235. https://doi.org/10.1002/2016JD024821
Chaney, N. W., J. D. Herman, M. B. Ek, and E. F. Wood. “Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning.” Journal of Geophysical Research: Atmospheres 121, no. 22 (November 27, 2016): 218–35. https://doi.org/10.1002/2016JD024821.
Chaney NW, Herman JD, Ek MB, Wood EF. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning. Journal of Geophysical Research: Atmospheres. 2016 Nov 27;121(22):218–35.
Chaney, N. W., et al. “Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning.” Journal of Geophysical Research: Atmospheres, vol. 121, no. 22, Nov. 2016, pp. 218–35. Scopus, doi:10.1002/2016JD024821.
Chaney NW, Herman JD, Ek MB, Wood EF. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning. Journal of Geophysical Research: Atmospheres. 2016 Nov 27;121(22):218–235.

Published In

Journal of Geophysical Research: Atmospheres

DOI

EISSN

2169-8996

ISSN

2169-897X

Publication Date

November 27, 2016

Volume

121

Issue

22

Start / End Page

218 / 235

Related Subject Headings

  • 3702 Climate change science
  • 3701 Atmospheric sciences
  • 0406 Physical Geography and Environmental Geoscience
  • 0401 Atmospheric Sciences