Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries
High-energy rechargeable lithium metal batteries have attracted soaring attention because of high specific capacity and low electrochemical potential of lithium metal. Unfortunately, the lithium dendrite growth upon Li plating severely hinders its practical application. Herein, we report the preparation of ionic liquid (IL) immobilized polymer gel electrolytes with strong ion-dipole interactions between imidazolium-based IL and fluorinated copolymer gel for stable and dendrite-free Li+ plating/stripping. The adoption of IL leads to the formation of a tightly cross-linked gel framework with tethered anions, providing greatly-improved mechanical strength, good heat resistance, favorable self-healing capability, high ionic conductivity, and a stable electrochemical window up to 4.5 V vs. Li+/Li that can satisfy the demand of high-voltage cathodes. The membrane of IL-immobilized polymer gel electrolyte enabled dendrite-free Li deposition, showing stable cycling durability for 1000 h at 0.5 mA cm−2, and the functional mechanism was carefully investigated. By coupling with this gel electrolyte membrane, the LiFePO
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 4018 Nanotechnology
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry
- 1007 Nanotechnology
- 0912 Materials Engineering
- 0303 Macromolecular and Materials Chemistry
Citation
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 4018 Nanotechnology
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry
- 1007 Nanotechnology
- 0912 Materials Engineering
- 0303 Macromolecular and Materials Chemistry