Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays
Overall water splitting driven by a sustainable solar energy source has been recognized as a promising route to produce clean and renewable hydrogen fuel. However, its practical application is restricted by the low energy conversion efficiency and poor stability of photocatalysts. Herein, we report the realization of highly efficient overall water splitting promoted by bifunctional bimetallic phosphide (Ni
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4016 Materials engineering
- 4004 Chemical engineering
- 3403 Macromolecular and materials chemistry
- 0915 Interdisciplinary Engineering
- 0912 Materials Engineering
- 0303 Macromolecular and Materials Chemistry
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4016 Materials engineering
- 4004 Chemical engineering
- 3403 Macromolecular and materials chemistry
- 0915 Interdisciplinary Engineering
- 0912 Materials Engineering
- 0303 Macromolecular and Materials Chemistry