Coordination corrected ab initio formation enthalpies
The correct calculation of formation enthalpy is one of the enablers of ab-initio computational materials design. For several classes of systems (e.g. oxides) standard density functional theory produces incorrect values. Here we propose the “coordination corrected enthalpies” method (CCE), based on the number of nearest neighbor cation–anion bonds, and also capable of correcting relative stability of polymorphs. CCE uses calculations employing the Perdew, Burke and Ernzerhof (PBE), local density approximation (LDA) and strongly constrained and appropriately normed (SCAN) exchange correlation functionals, in conjunction with a quasiharmonic Debye model to treat zero-point vibrational and thermal effects. The benchmark, performed on binary and ternary oxides (halides), shows very accurate room temperature results for all functionals, with the smallest mean absolute error of 27(24) meV/atom obtained with SCAN. The zero-point vibrational and thermal contributions to the formation enthalpies are small and with different signs—largely canceling each other.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 5104 Condensed matter physics
- 4016 Materials engineering
- 3407 Theoretical and computational chemistry
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 5104 Condensed matter physics
- 4016 Materials engineering
- 3407 Theoretical and computational chemistry