Skip to main content

Medical Physics 3.0: Ensuring Quality and Safety in Medical Imaging.

Publication ,  Journal Article
Samei, E
Published in: Health Phys
February 2019

Medical imaging often involves radiation and thus radiation protection. Radiation protection in medicine is only one component of the broader calling of health care professionals: fostering human health. As such, radiation risk needs to be put into the context of the larger mandate of improved outcomes in health care. Medical physicists, according to the new vision of Medical Physics 3.0, make a significant contribution to this mandate as they engage proactively and meaningfully in patient care. Facing the new realities of value-based, personalized, and evidence-based practice, Medical Physics 3.0 is an initiative to make physics inform every patient's care by fostering new skills and expanding horizons for the medical physics profession. It provides a framework by which medical physicists can maintain and improve their integral roles in, and contributions to, health care, its innovation, and its precision. One way that Medical Physics 3.0 will manifest itself in medical imaging practice is by engaging physicists to ensure the precise and optimized use of radiation. Optimization takes place through knowing the defining attributes of the technology in use, the specifics of the patient's situation, and the goals of the imaging and/or intervention. The safety as well as the quality of the procedure is ascertained quantitatively and optimized prospectively, ensuring a proper balance between quality and safety to offer maximum potential benefit to the patient. The results of procedures across the health care operation are then retrospectively analyzed to ensure that each procedure has, in actuality, delivered the targeted quality and safety objectives. Characterizing quality and safety in quantitative terms, objectively optimizing them in the practice of personalized care, and analyzing the results from clinical operations all require the unique combination of precision and innovation that physicists bring to the development and practice of medicine.

Duke Scholars

Published In

Health Phys

DOI

EISSN

1538-5159

Publication Date

February 2019

Volume

116

Issue

2

Start / End Page

247 / 255

Location

United States

Related Subject Headings

  • Risk Assessment
  • Radiation Protection
  • Quality Assurance, Health Care
  • Patient Safety
  • Nuclear Medicine & Medical Imaging
  • Humans
  • Diagnostic Imaging
  • 3202 Clinical sciences
  • 1117 Public Health and Health Services
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Samei, E. (2019). Medical Physics 3.0: Ensuring Quality and Safety in Medical Imaging. Health Phys, 116(2), 247–255. https://doi.org/10.1097/HP.0000000000001022
Samei, Ehsan. “Medical Physics 3.0: Ensuring Quality and Safety in Medical Imaging.Health Phys 116, no. 2 (February 2019): 247–55. https://doi.org/10.1097/HP.0000000000001022.
Samei E. Medical Physics 3.0: Ensuring Quality and Safety in Medical Imaging. Health Phys. 2019 Feb;116(2):247–55.
Samei, Ehsan. “Medical Physics 3.0: Ensuring Quality and Safety in Medical Imaging.Health Phys, vol. 116, no. 2, Feb. 2019, pp. 247–55. Pubmed, doi:10.1097/HP.0000000000001022.
Samei E. Medical Physics 3.0: Ensuring Quality and Safety in Medical Imaging. Health Phys. 2019 Feb;116(2):247–255.

Published In

Health Phys

DOI

EISSN

1538-5159

Publication Date

February 2019

Volume

116

Issue

2

Start / End Page

247 / 255

Location

United States

Related Subject Headings

  • Risk Assessment
  • Radiation Protection
  • Quality Assurance, Health Care
  • Patient Safety
  • Nuclear Medicine & Medical Imaging
  • Humans
  • Diagnostic Imaging
  • 3202 Clinical sciences
  • 1117 Public Health and Health Services