Differentially private hierarchical countofcounts histograms
We consider the problem of privately releasing a class of queries that we call hierarchical count-of-counts histograms. Count-of-counts histograms partition the rows of an input table into groups (e.g., group of people in the same house- hold), and for every integer j report the number of groups of size j. Hierarchical count-of-counts queries report count-of- counts histograms at different granularities as per hierarchy defined on an attribute in the input data (e.g., geographical location of a household at the national, state and county levels). In this paper, we introduce this problem, along with appropriate error metrics and propose a differentially private solution that generates count-of-counts histograms that are consistent across all levels of the hierarchy.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics