Skip to main content
Journal cover image

Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification.

Publication ,  Journal Article
Bratt, A; Kim, J; Pollie, M; Beecy, AN; Tehrani, NH; Codella, N; Perez-Johnston, R; Palumbo, MC; Alakbarli, J; Colizza, W; Drexler, IR ...
Published in: J Cardiovasc Magn Reson
January 7, 2019

BACKGROUND: Phase contrast (PC) cardiovascular magnetic resonance (CMR) is widely employed for flow quantification, but analysis typically requires time consuming manual segmentation which can require human correction. Advances in machine learning have markedly improved automated processing, but have yet to be applied to PC-CMR. This study tested a novel machine learning model for fully automated analysis of PC-CMR aortic flow. METHODS: A machine learning model was designed to track aortic valve borders based on neural network approaches. The model was trained in a derivation cohort encompassing 150 patients who underwent clinical PC-CMR then compared to manual and commercially-available automated segmentation in a prospective validation cohort. Further validation testing was performed in an external cohort acquired from a different site/CMR vendor. RESULTS: Among 190 coronary artery disease patients prospectively undergoing CMR on commercial scanners (84% 1.5T, 16% 3T), machine learning segmentation was uniformly successful, requiring no human intervention: Segmentation time was < 0.01 min/case (1.2 min for entire dataset); manual segmentation required 3.96 ± 0.36 min/case (12.5 h for entire dataset). Correlations between machine learning and manual segmentation-derived flow approached unity (r = 0.99, p < 0.001). Machine learning yielded smaller absolute differences with manual segmentation than did commercial automation (1.85 ± 1.80 vs. 3.33 ± 3.18 mL, p < 0.01): Nearly all (98%) of cases differed by ≤5 mL between machine learning and manual methods. Among patients without advanced mitral regurgitation, machine learning correlated well (r = 0.63, p < 0.001) and yielded small differences with cine-CMR stroke volume (∆ 1.3 ± 17.7 mL, p = 0.36). Among advanced mitral regurgitation patients, machine learning yielded lower stroke volume than did volumetric cine-CMR (∆ 12.6 ± 20.9 mL, p = 0.005), further supporting validity of this method. Among the external validation cohort (n = 80) acquired using a different CMR vendor, the algorithm yielded equivalently small differences (∆ 1.39 ± 1.77 mL, p = 0.4) and high correlations (r = 0.99, p < 0.001) with manual segmentation, including similar results in 20 patients with bicuspid or stenotic aortic valve pathology (∆ 1.71 ± 2.25 mL, p = 0.25). CONCLUSION: Fully automated machine learning PC-CMR segmentation performs robustly for aortic flow quantification - yielding rapid segmentation, small differences with manual segmentation, and identification of differential forward/left ventricular volumetric stroke volume in context of concomitant mitral regurgitation. Findings support use of machine learning for analysis of large scale CMR datasets.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Cardiovasc Magn Reson

DOI

EISSN

1532-429X

Publication Date

January 7, 2019

Volume

21

Issue

1

Start / End Page

1

Location

England

Related Subject Headings

  • United States
  • Retrospective Studies
  • Reproducibility of Results
  • Prospective Studies
  • Proof of Concept Study
  • Predictive Value of Tests
  • Nuclear Medicine & Medical Imaging
  • Myocardial Perfusion Imaging
  • Middle Aged
  • Male
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Bratt, A., Kim, J., Pollie, M., Beecy, A. N., Tehrani, N. H., Codella, N., … Weinsaft, J. W. (2019). Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J Cardiovasc Magn Reson, 21(1), 1. https://doi.org/10.1186/s12968-018-0509-0
Bratt, Alex, Jiwon Kim, Meridith Pollie, Ashley N. Beecy, Nathan H. Tehrani, Noel Codella, Rocio Perez-Johnston, et al. “Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification.J Cardiovasc Magn Reson 21, no. 1 (January 7, 2019): 1. https://doi.org/10.1186/s12968-018-0509-0.
Bratt A, Kim J, Pollie M, Beecy AN, Tehrani NH, Codella N, et al. Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J Cardiovasc Magn Reson. 2019 Jan 7;21(1):1.
Bratt, Alex, et al. “Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification.J Cardiovasc Magn Reson, vol. 21, no. 1, Jan. 2019, p. 1. Pubmed, doi:10.1186/s12968-018-0509-0.
Bratt A, Kim J, Pollie M, Beecy AN, Tehrani NH, Codella N, Perez-Johnston R, Palumbo MC, Alakbarli J, Colizza W, Drexler IR, Azevedo CF, Kim RJ, Devereux RB, Weinsaft JW. Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J Cardiovasc Magn Reson. 2019 Jan 7;21(1):1.
Journal cover image

Published In

J Cardiovasc Magn Reson

DOI

EISSN

1532-429X

Publication Date

January 7, 2019

Volume

21

Issue

1

Start / End Page

1

Location

England

Related Subject Headings

  • United States
  • Retrospective Studies
  • Reproducibility of Results
  • Prospective Studies
  • Proof of Concept Study
  • Predictive Value of Tests
  • Nuclear Medicine & Medical Imaging
  • Myocardial Perfusion Imaging
  • Middle Aged
  • Male