Skip to main content

Comparative Structural Neck Responses of the THOR-NT, Hybrid III, and Human in Combined Tension-Bending and Pure Bending

Publication ,  Conference
Dibb, AT; Nightingale, RW; Chancey, VC; Fronheiser, LE; Tran, L; Ottaviano, D; Myers, BS
Published in: SAE Technical Papers
November 6, 2006

This study evaluated the biofidelity of both the Hybrid III and the THOR-NT anthropomorphic test device (ATD) necks in quasistatic tension-bending and pure-bending by comparing the responses of both the ATDs with results from validated computational models of the living human neck. This model was developed using post-mortem human surrogate (PMHS) osteoligamentous response corridors with effective musculature added (Chancey, 2005). Each ATD was tested using a variety of end-conditions to create the tension-bending loads. The results were compared using absolute difference, RMS difference, and normalized difference metrics. The THOR-NT was tested both with and without muscle cables. The THOR-NT was also tested with and without the central safety cable to test the effect of the cable on the behavior of the ATD. The Hybrid III was stiffer than the model for all tension-bending end conditions. Quantitative measurement of the differences in response showed more close agreement between the THOR-NT and the model than the Hybrid III and the model. By contrast, no systematic differences were observed in the head kinematics. The muscle cables significantly stiffened the THOR-NT by effectively reducing the laxity from the occipital condyle (OC) joint. The cables also shielded the OC upper neck load cell from a significant portion of the applied loads. The center safety significantly stiffened the response and decreased the fidelity, particularly in modes of loading in which tensile forces were large and bending moments small. This study compares ATD responses to computational models in which the models include PMHS response corridors while correcting for problems associated with cadaveric muscle. While controversial and requiring considerable diligence, these kinds of approaches show promise in assessing ATD biofidelity.

Duke Scholars

Published In

SAE Technical Papers

DOI

EISSN

0148-7191

Publication Date

November 6, 2006

Volume

2006-November

Issue

November

Related Subject Headings

  • 0910 Manufacturing Engineering
  • 0902 Automotive Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Dibb, A. T., Nightingale, R. W., Chancey, V. C., Fronheiser, L. E., Tran, L., Ottaviano, D., & Myers, B. S. (2006). Comparative Structural Neck Responses of the THOR-NT, Hybrid III, and Human in Combined Tension-Bending and Pure Bending. In SAE Technical Papers (Vol. 2006-November). https://doi.org/10.4271/2006-22-0021
Dibb, A. T., R. W. Nightingale, V. C. Chancey, L. E. Fronheiser, L. Tran, D. Ottaviano, and B. S. Myers. “Comparative Structural Neck Responses of the THOR-NT, Hybrid III, and Human in Combined Tension-Bending and Pure Bending.” In SAE Technical Papers, Vol. 2006-November, 2006. https://doi.org/10.4271/2006-22-0021.
Dibb AT, Nightingale RW, Chancey VC, Fronheiser LE, Tran L, Ottaviano D, et al. Comparative Structural Neck Responses of the THOR-NT, Hybrid III, and Human in Combined Tension-Bending and Pure Bending. In: SAE Technical Papers. 2006.
Dibb, A. T., et al. “Comparative Structural Neck Responses of the THOR-NT, Hybrid III, and Human in Combined Tension-Bending and Pure Bending.” SAE Technical Papers, vol. 2006-November, no. November, 2006. Scopus, doi:10.4271/2006-22-0021.
Dibb AT, Nightingale RW, Chancey VC, Fronheiser LE, Tran L, Ottaviano D, Myers BS. Comparative Structural Neck Responses of the THOR-NT, Hybrid III, and Human in Combined Tension-Bending and Pure Bending. SAE Technical Papers. 2006.

Published In

SAE Technical Papers

DOI

EISSN

0148-7191

Publication Date

November 6, 2006

Volume

2006-November

Issue

November

Related Subject Headings

  • 0910 Manufacturing Engineering
  • 0902 Automotive Engineering