Shrinkwrap: Efficient SQL query processing in differentially private data federations
A private data federation is a set of autonomous databases that share a unified query interface offering in-situ evaluation of SQL queries over the union of the sensitive data of its members. Owing to privacy concerns, these systems do not have a trusted data collector that can see all their data and their member databases cannot learn about individual records of other engines. Federations currently achieve this goal by evaluating queries obliviously using secure multiparty computation. This hides the intermediate result cardinality of each query operator by exhaustively padding it. With cascades of such operators, this padding accumulates to a blow-up in the output size of each operator and a proportional loss in query performance. Hence, existing private data federations do not scale well to complex SQL queries over large datasets. We introduce Shrinkwrap, a private data federation that offers data owners a differentially private view of the data held by others to improve their performance over oblivious query processing. Shrinkwrap uses computational differential privacy to minimize the padding of intermediate query results, achieving up to a 35X performance improvement over oblivious query processing. When the query needs differentially private output, Shrinkwrap provides a trade-off between result accuracy and query evaluation performance.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics