On the local minima of the empirical risk
Population risk is always of primary interest in machine learning; however, learning algorithms only have access to the empirical risk. Even for applications with nonconvex nonsmooth losses (such as modern deep networks), the population risk is generally significantly more well-behaved from an optimization point of view than the empirical risk. In particular, sampling can create many spurious local minima. We consider a general framework which aims to optimize a smooth nonconvex function F (population risk) given only access to an approximation f (empirical risk) that is pointwise close to F (i.e., kF − fk
Duke Scholars
Published In
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 4611 Machine learning
- 1702 Cognitive Sciences
- 1701 Psychology
Citation
Published In
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 4611 Machine learning
- 1702 Cognitive Sciences
- 1701 Psychology