Skip to main content

Assessing Relations between Electrical and Geotechnical Properties of Sand-Clay Mixtures Using Jonscher Fractal Power Law Model

Publication ,  Journal Article
Boadu, FK; Ampadu, S
Published in: Journal of Environmental and Engineering Geophysics
March 1, 2019

The geotechnical properties of unconsolidated geo-materials such as soils are influenced by modifications of their micro-structure, texture, mineralogy, water content and imposed effective stress levels. Fundamental relations between the characteristic electrical parameters describing the electrical responses soils based on a fractal power law model with scaling properties, and parameters influencing their geotechnical behavior are investigated. Low frequency electrical conductivity laboratory measurements were performed on sand and clay mixtures subjected to varying effective stress levels with concurrent measurements of their geotechnical properties. The conductivity spectra of the mixtures were described using a Jonscher fractal power law model characterized with three characteristic parameters, the dc conductivity (σdc), the characteristic frequency (fc) and an exponent (n). Changes in effective stress, water content, clay content, and other engineering properties of the mixture such as dry density, porosity, pore size and intergranular void ratio are discussed with respect to changes in the electrical parameters. The dc conductivity and characteristic frequency decrease with an increase in effective stress levels. The exponent, however, has the opposite behavior and increases with an increase in effective stress. As the water content increases, σdc and fc increase while n decreases for all mixtures. With increasing stress levels, the average pore size of the mixtures decreases which results in a decrease in σdc and fc but an increase in the values of the exponent. An increase in dry density of the mixtures leads to a decrease in σdc and fc whilst n increases. Both σdc and fc increase with increase in the intergranular void ratio of the mixture whilst the exponent values decrease with an increase in the intergranular void ratio. This study serves as a contribution to our quest in utilizing electrical geophysical methods, to assess and monitor non-invasively, the geotechnical properties of the subsurface in a less expensive and faster manner.

Duke Scholars

Published In

Journal of Environmental and Engineering Geophysics

DOI

EISSN

1943-2658

ISSN

1083-1363

Publication Date

March 1, 2019

Volume

24

Issue

1

Start / End Page

77 / 85

Related Subject Headings

  • Geochemistry & Geophysics
  • 3706 Geophysics
  • 0907 Environmental Engineering
  • 0404 Geophysics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Boadu, F. K., & Ampadu, S. (2019). Assessing Relations between Electrical and Geotechnical Properties of Sand-Clay Mixtures Using Jonscher Fractal Power Law Model. Journal of Environmental and Engineering Geophysics, 24(1), 77–85. https://doi.org/10.2113/JEEG24.1.77
Boadu, F. K., and S. Ampadu. “Assessing Relations between Electrical and Geotechnical Properties of Sand-Clay Mixtures Using Jonscher Fractal Power Law Model.” Journal of Environmental and Engineering Geophysics 24, no. 1 (March 1, 2019): 77–85. https://doi.org/10.2113/JEEG24.1.77.
Boadu FK, Ampadu S. Assessing Relations between Electrical and Geotechnical Properties of Sand-Clay Mixtures Using Jonscher Fractal Power Law Model. Journal of Environmental and Engineering Geophysics. 2019 Mar 1;24(1):77–85.
Boadu, F. K., and S. Ampadu. “Assessing Relations between Electrical and Geotechnical Properties of Sand-Clay Mixtures Using Jonscher Fractal Power Law Model.” Journal of Environmental and Engineering Geophysics, vol. 24, no. 1, Mar. 2019, pp. 77–85. Scopus, doi:10.2113/JEEG24.1.77.
Boadu FK, Ampadu S. Assessing Relations between Electrical and Geotechnical Properties of Sand-Clay Mixtures Using Jonscher Fractal Power Law Model. Journal of Environmental and Engineering Geophysics. 2019 Mar 1;24(1):77–85.

Published In

Journal of Environmental and Engineering Geophysics

DOI

EISSN

1943-2658

ISSN

1083-1363

Publication Date

March 1, 2019

Volume

24

Issue

1

Start / End Page

77 / 85

Related Subject Headings

  • Geochemistry & Geophysics
  • 3706 Geophysics
  • 0907 Environmental Engineering
  • 0404 Geophysics