The Arithmetic of Fundamental Groups: PIA 2010
On 3-nilpotent obstructions to π
On 3-nilpotent obstructions to π1 sections for ℙ1ℚ -{0,1,∞}
Publication
, Chapter
Wickelgren, K
January 1, 2012
We study which rational points of the Jacobian of ℙ1-{0,1,∞} can be lifted to sections of geometrically 3-nilpotent quotients of étale π1 over the absolute Galois group. This is equivalent to evaluating certain triple Massey products of elements of k* ⊆ H1(Gk, ℤ(1)) or H1(Gk,ℤ/2ℤ). For k = ℚp or R, we give a complete mod 2 calculation. This permits some mod 2 calculations for k = ℚ. These are computations of obstructions of Jordan Ellenberg.
Duke Scholars
Citation
APA
Chicago
ICMJE
MLA
NLM
Wickelgren, K. (2012). On 3-nilpotent obstructions to π1 sections for ℙ1ℚ -{0,1,∞}. In The Arithmetic of Fundamental Groups: PIA 2010 (pp. 281–328). https://doi.org/10.1007/978-3-642-23905-2_12
Wickelgren, K. “On 3-nilpotent obstructions to π1 sections for ℙ1ℚ -{0,1,∞}.” In The Arithmetic of Fundamental Groups: PIA 2010, 281–328, 2012. https://doi.org/10.1007/978-3-642-23905-2_12.
Wickelgren K. On 3-nilpotent obstructions to π1 sections for ℙ1ℚ -{0,1,∞}. In: The Arithmetic of Fundamental Groups: PIA 2010. 2012. p. 281–328.
Wickelgren, K. “On 3-nilpotent obstructions to π1 sections for ℙ1ℚ -{0,1,∞}.” The Arithmetic of Fundamental Groups: PIA 2010, 2012, pp. 281–328. Scopus, doi:10.1007/978-3-642-23905-2_12.
Wickelgren K. On 3-nilpotent obstructions to π1 sections for ℙ1ℚ -{0,1,∞}. The Arithmetic of Fundamental Groups: PIA 2010. 2012. p. 281–328.