QuickFOIL: Scalable inductive logic programming
learning technique that learns first-order rules from relationalstructured data. However, to-date most ILP systems can only be applied to small datasets (tens of thousands of examples). A long-standing challenge in the field is to scale ILP methods to larger data sets. This paper presents a method called QuickFOIL that addresses this limitation. QuickFOIL employs a new scoring function and a novel pruning strategy that enables the algorithm to find highquality rules. QuickFOIL can also be implemented as an in-RDBMS algorithm. Such an implementation presents a host of query processing and optimization challenges that we address in this paper. Our empirical evaluation shows that QuickFOIL can scale to large datasets consisting of hundreds of millions tuples, and is often more than order of magnitude more efficient than other existing approaches. © 2014 VLDB Endowment 2150-8097/14/11.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics